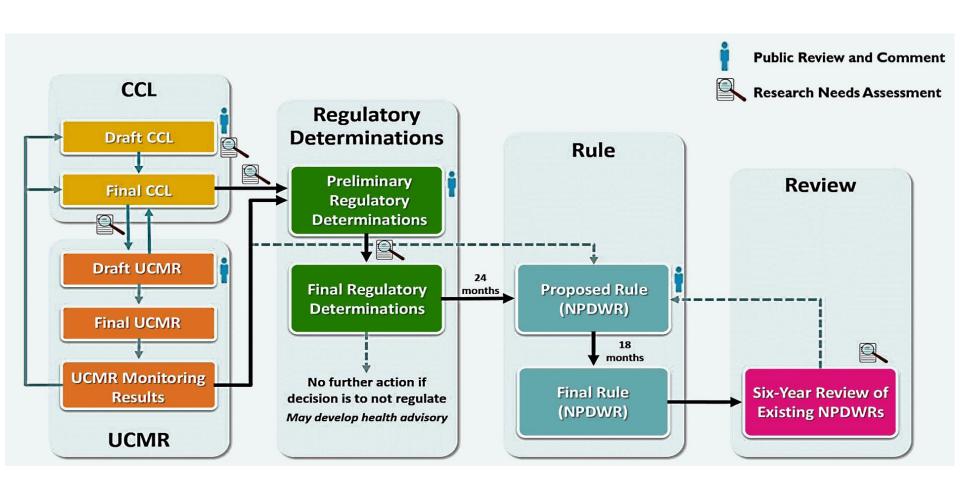
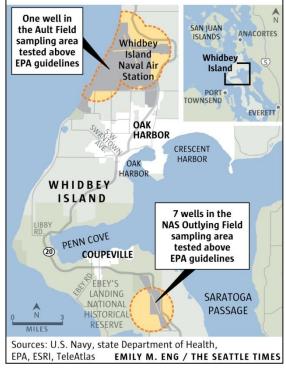
eurofins

WHEN LEGISLATION MEETS WATER QUALITY STANDARDS


May 23, 2019

LEGISLATION & QUALITY STANDARDS

REGULATION IN THE PUBLIC DOMAIN



Whidbey drinking water

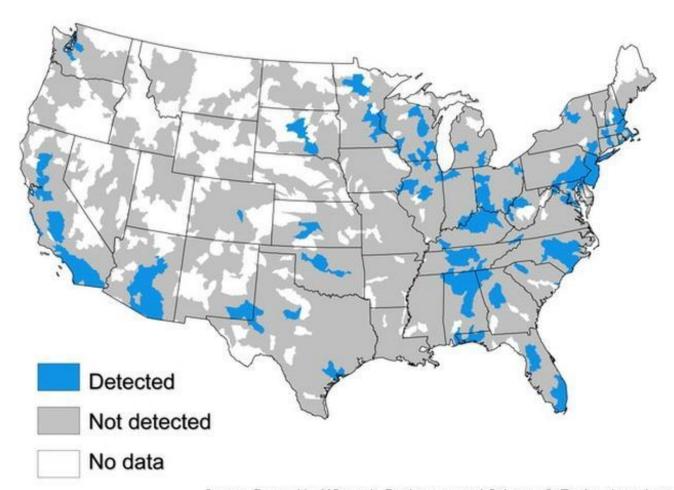
Eight Whidbey Island wells serving private homes tested above the EPA lifetime health advisory levels for perfluoroalkyl and/or polyfluoroalkyl chemicals. These man-made compounds were present in firefighting foams used by Navy airfield crews.

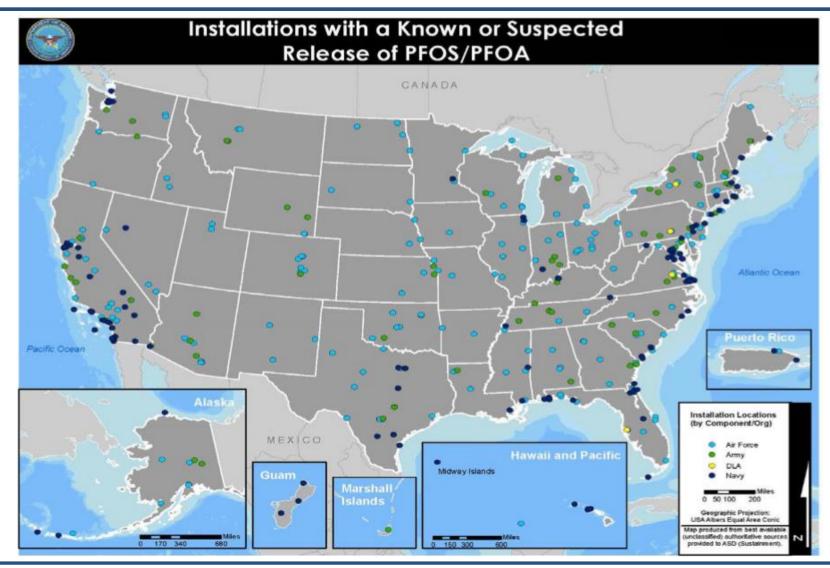
DDW PRIORITIES FOR 2019

THEREFORE BE IT RESOLVED THAT:

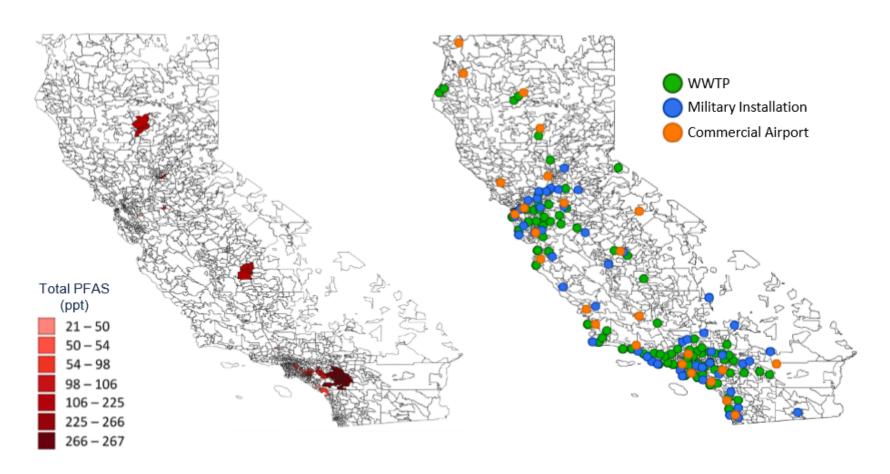
- The State Water Board approves DDW proposal not to re-examine any existing MCLs this year.
- The State Water Board directs DDW to prioritize their work on drinking water regulation for calendar year 2019 as follows:
 - Hexavalent Chromium MCL
 - a. Economic Feasibility Workshops
 - b. Maximum Contaminant Level
 - 2. Lead and Copper Rule (LCR)
 - a. Short-Term Revisions
 - b. Revised Lead Detection Limit for Purposes of Reporting (DLR)
 - c. Assistance to Department of Social Services for Daycare Regulations
 - d. Lead and Copper Rule Revision
 - 3. Revised Total Coliform Rule (RTCR)
 - 4. Direct Potable Re-use (DPR)
 - a. Research and Framework
 - b. Regulations
 - 5. Cross-Connection and Backflow Protection Control Regulations
 - a. Review of Existing Regulations
 - b. Policy Handbook
 - 6. Environmental Laboratory Accreditation Program (ELAP) Regulations
 - 7. Primacy Package Applications
 - a. Consumer Confidence Reports
 - b. Public Notification
 - 8. Revised Perchlorate DLR
 - Microplastics
 - a. Definition
 - b. Testing and Reporting Regulations
 - 10. Water Quality Standards for On-site Treatment and Reuse
 - 11. Electronic Reporting of Drinking Water Quality Data
 - 12. Investigation of Per- and Polyflouroalkyl Substances (PFAS)

PFAS - NATIONAL OCCURRENCE




Image From: Hu XC et al., Environmental Science & Technology Letters, 2016

PFAS - DOD OCCURRENCE

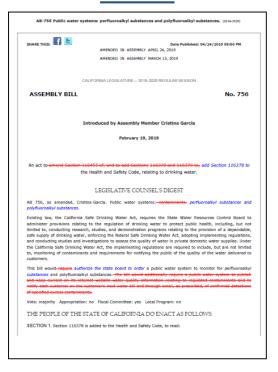


PFAS - CALIFORNIA OCCURRENCE

https://www.epa.gov/dwucmr/occurrence-data-unregulated-contaminant-monitoring-rule#3
Hu XC, et al., 2016. Detection of PFASs in US drinking water linked to industrial sites, military fire training areas, and waste water treatment plants. Env Sci and Tech Letters 3(10):344–350

PFAS LEGISLATION

In response to EPA The California State


Water Board acted on

July 13, 2018

Notification Levels
13 ng/L (PFOS)
14 ng/L (PFOA)

Response Level
70 ngL (PFOS + PFOA)

AB756

AB841

PFAS ORDERS - HSC 116400

- 1. Water analysis requirements for systems subject to potential contamination due to prior analytical data (UCMR3) and/or proximity to adjacent sources that may be contaminated
- 2. Specific sampling guidance
- 3. Analytical method and reporting requirements
- 4. Flexibility in verification of test results used for CCR, Notification Level and Response Level compliance
- 5. Orders are legally enforceable and may be modified to protect public health

PFAS MONITORING IMPLEMENTATION

					Near	Near PFAS	PFAS Detect	Near PFAS	
					Airport	Detect	and Near	Detect (1mi)	
			Near	Near	(2mi) and	(1mi) and	Airport (2 mi)	and Airport	
		Near PFAS	Landfill	Airport	Landfill	Airport	and Landfill	(2mi) and	Grand
	PFAS Detect	Detect (1 mi)	(1mi)	(2mi)	(1mi)	(2mi)	(1mi)	Landfill (1mi)	Total
Grand Total	99	161	138	215	32	10	3	2	660

WATER CODE SECTION 13267 ORDER FOR THE DETERMINATION OF THE PRESENCE OF PER- AND POLYFLUOROALKYL SUBSTANCES

ORDER WQ 2019-0006-DWQ

= 252 Municipal Landfills

WATER CODE SECTION 13267 ORDER FOR THE DETERMINATION OF THE PRESENCE OF PER- AND POLYFLUOROALKYL SUBSTANCES

ORDER WQ 2019-0005-DWQ

= 31 Airports

PFAS ANALYTICAL METHODS

EPA Method 537 (14 PFAS and		EPA Method 537.1* (18 PFAS analytes)		
Analyte	Detection Limit ^[1] (ng/L)	Analyte	Detection Limit ^[1] (ng/L)	
PFBS	3.1	PFBS	1.8	
PFHxA	1.6	PFHxA	1.0	
PFHpA	0.5	PFHpA	0.71	
PFHxS	2.0	PFHxS	1.4	
PFOA	1.7	PFOA	0.53	
PFOS	1.4	PFOS	1.1	
PFNA	0.7	PFNA	0.7	
PFDA	0.7	PFDA	1.6	
NMeFOSAA	6.5	NMeFOSAA	2.4	
PFUnA	2.8	PFUnA	1.6	
NEtFOSAA	4.2	NEtFOSAA	2.8	
PFDoA	1.1	PFDoA	1.2	
PFTrDA	2.2	PFTrDA	0.72	
PFTA	1.7	PFTA	1.1	
		HFPO-DA	1.9	
		ADONA	0.88	
		9CI-PF3ONS	1.4	
*in reagent water		11CL-PF3OUdS	1.5	

Chemical Name	Abbreviation	Chemical Abstrac Service (CAS) No.
2,3,3,3-Tetrafluoro-2-(heptafluoropropoxy)propanoic acid	HFPO-DA	13252-13-6*
0:2 Fluorotelomer sulfonic acid	10:2 FTS	120226-60-0*
2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy) propanoic Acid	HFPA-DA	13252-13-6 *
Perfluorooctadecanoic acid	PFOcDA	16517-11-6*
N-Ethyl perfluorooctane sulfonamidoethanol	EtFOSE	1691-99-2*
Perfluorooctane sulfonic acid	PFOS	1763-23-1
Perfluoroundecanoic acid	PFUnDA	2058-94-8
N-Methyl perfluorooctane sulfonamidoacetic acid	NMeFOSAA	2355-31-9
N-Methyl perfluorooctane sulfonamidoethanol	MeFOSE	24448-09-7*
Perfluoropentanoiic Acid	PFPeA	2706-90-3
Perfluoropentane sulfonoic acid	PFPeS	2708-91-4
3:2 Fluorotelomer sulfonic acid	6:2 FTS	27619-97-2
N-Ethyl perfluorooctane sulfonamidoacetic acid	NEtFOSAA	2991-50-6
Perfluorohexanoic acid	PFHxA	307-24-4
.0Perfluorododecanoic acid	PFDoDA	307-55-1
N-Methyl perfluorooctane sulfonamide	MeFOSA	31506-32-8*
Perfluorocctanoic acid	PFOA	335-67-1
Perfluorodecanoic acid	PFDA	335-76-2
Perfluorodecane sulfonic acid	PFDS	335-77-3
4,5,5,6,6,6-Heptafluorohexanoic Acid	3:3 FTCA	356-02-5*
Perfluorohexane sulfonic acid	PFHxS	355-46-4
Perfluorobutanoic acid	PFBA	375-22-4
Perfluorobutane sulfonic acid	PFBS	375-73-5
Perfluoroheptanoic acid	PFHpA	375-85-9
Perfluoroheptane sulfonic acid	PFHpS	375-92-8
Perfluorononanoic acid	PFNA	375-95-1
Perfluorotetradecanoic acid	PFTeDA	376-06-7
2H,2H,3H,3H-Perfluorodecanoic acid	7:3 FTCA	812-70-4*
3:2 Fluorotelomer sulfonic acid	8:2 FTS	39108-34-4
N-Ethyl perfluorooctane sulfonamide	EtFOSA	4151-50-2*
Perfluorononane sulfonic acid	PFNS	474511-07-4*
Perfluorohexadecanoic acid	PFHxDA	67905-19-5*
Perfluorotridecanoic acid	PFTrDA	72629-94-8
Perfluorooctanesulfonamide	FOSA	754-91-6
:2 Fluorotelomer sulfonic acid	4:2 FTS	757124-72-4
Perfluoro(2-((6-chlorohexyl)oxy)ethanesulfonic acid)	9CI-PF3ONS	756426-58-1*
2-[(8-Chloro-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluorooctyl)oxy]- ,1,2,2-tetrafluoroethanesulfonic acid	11CI- PF3OUdS	763051-92-9*
2H,2H,3H,3H-Perfluorooctanoic Acid (CAS 914637-49-3)	5:3 FTCA	914637-49-3*
1,8-Dioxa-3H-perfluorononanoic acid	Adona	919005-14-4*

MICROPLASTICS LEGISLATION

Year	Bill	Bill Summary		Impact	
2014	SB 270	Single use plastic bag ban	July 1, 2015	Reduction of about 13 billion bags per year (CBS13 2017)	
2015	AB 888	Ban on plastic microbeads	January 1, 2020	Inspired federal legislation to ban microbeads	
2018	SB 1335	State owned facilities (and concessionaires) must use recyclable, reusable, or compostable food service packaging	January 1, 2021	Limited – state owned facilities only	
2018	SB 1263	Statewide microplastics strategy	December 31, 2021	To be determined	
2018	AB 1884	Plastic straws available only upon request at sit-down restaurants	January 1, 2019	Limited – not applicable at fast food restaurants	
2018	SB 1422	Microplastics testing in drinking water	July 1, 2020	Will require drinking water utilities to test for microplastics for 4 years	

MICROPLASTICS LEGISLATION – SB1422

SB-1422 California Safe Drinking Water Act: microplastics. (2017-2018)

Date Published: 09/28/2018 09:00 PM

Senate Bill No. 1422

CHAPTER 902

An act to add Section 116376 to the Health and Safety Code, relating to drinking water.

[Approved by Governor September 28, 2018. Filed with Secretary of State September 28, 2018.]

LEGISLATIVE COUNSEL'S DIGEST

SB 1422, Portantino, California Safe Drinking Water Act: microplastics.

Existing law, the California Safe Drinking Water Act, requires the State Water Resources Control Board to administer provisions relating to the regulation of drinking water to protect public health, including, but not limited to, conducting research, studies, and demonstration programs relating to the provision of adependable, safe supply of drinking water, enforcing the federal Safe Drinking Water Act, adopting implementing regulations, and conducting studies and investigations to assess the quality of water in private domestic water supplies. Under the act, the implementing regulations are required to include, but are not limited to, monitoring of contaminants and requirements for notifying the public of the quality of the water delivered to customers.

This bill would require the state board, on or before July 1, 2020, to adopt a definition of microplastics in drinking water, and on or before July 1, 2021, to adopt a standard methodology to be used in the testing of drinking water for microplastics and requirements for 4 years of testing and reporting of microplastics in drinking water, including public disclosure of those results.

Vote: majority Appropriation: no Fiscal Committee: yes Local Program: no

THE PEOPLE OF THE STATE OF CALIFORNIA DO ENACT AS FOLLOWS:

SECTION 1. Section 116376 is added to the Health and Safety Code, to read:

116378. (a) The state board, on or before July 1, 2020, shall adopt a definition of microplastics in drinking water.

- (b) The state board, on or before July 1, 2021, shall do all of the following:
- (1) Adopt a standard methodology to be used in the testing of drinking water for microplastics.
- (2) Adopt requirements for four years of testing and reporting of microplastics in drinking water, including public disclosure of those results.
- (3) If appropriate, consider issuing a notification level or other guidance to aid consumer interpretations of the results of the testing required pursuant to this section.
- (4) Accredit qualified laboratories in California to analyze microplastics.

On or before 7-1-20

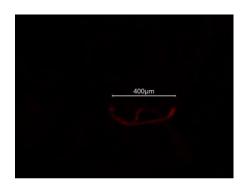
Adopt a Microplastics Definition

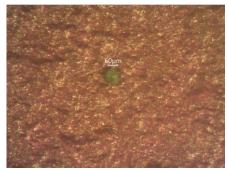
On or before 7-1-21

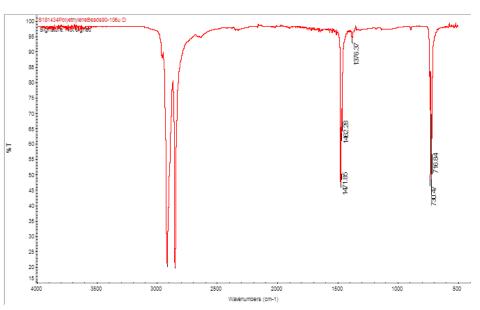
- Adopt a Microplastics Test Method and Certify laboratories
- Adopt a Requirement for drinking water system testing (4 years)
- Adopt Results Disclosure and Notification Level requirements

MICROPLASTICS DEFINITION - SIZE

- Plastic Waste
- Atmosphere
- Cosmetics
- Runoff
- Laundry


MICROPLASTICS DEFINITION - TYPES




Morphology – fibers, fragments, pellets, foam

Spectroscopy
PET
HDPE and LDPE
PP and PS
Nylon

MICROPLASTICS TEST METHODS

Measuring Microplastics: Building Best Practices for Sampling, Extraction and Analysis

Hosted by: HORIBA, Southern California Coastal Water Research Project Authority, and the University of Toronto In coordination with State of California Water Resources Control Board and the California Ocean Protection Council

> Held at the Southern California Coastal Water Research Project Authority 3535 Harbor Blvd Costa Mesa, CA 92626, USA

> > April 4, 2019

- 8:00 Coffee and networking
- 8:30 Welcome and introductions

Welcome from the meeting organizers Motivation and goals for the meeting Description of meeting agenda

- 8:50 Ocean Protection Council Perspective

 Deborah Halberstadt, Executive Director
- 9:10 State Water Resources Control Board Perspective
 Darrin Polhemus, Deputy Director for Drinking Water
- 9:30 Microplastic Overview and Aspects Related to Human Health for Consideration Bob Andrews (Drinking Water Research Group, University of Toronto) Chelsea Rochman (Ecology and Evolutionary Biology, University of Toronto)
- 10:00 Break
- 10:20 Methods: State of the Science
 - Methods for sampling microplastics Paul Helm (Ontario Ministry of Environment, Parks and Conservation)
 - Extracting microplastics from different environmental matrixes Amy Lusher (Norwegian Institute for Water Research)
 - Techniques for identifying and quantifying microplastics prior to, or in lieu of, spectroscopy - Keenan Munno (University of Toronto)
 - d. FTIR in microplastic research: Towards a harmonized and standardized analysis Sebastian Primpke (Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research).
 - e. Microplastics quest using pyrolysis GC-MS Ashok Deshpande (NOAA)
- 12:00 Lunch on site (\$10)
- 1:00 Methods: State of the Science (continued)
 - Raman Spectroscopy in correlative microscopy / spectroscopy workflows Silke Christiansen (Helmholtz Zentrum Berlin für Materialien und Energie & Max Planck Institute for the Science of Light)

- Microplastics in drinking water: Development and Automation of Raman Microspectroscopy - Marco Pittroff (TZW Technologiezentrum Wasser)
- A/QC for microplastics sampling, analysis and reporting Chelsea Rochman (University of Toronto)
- Planned European method evaluation study Amy Lusher (Norwegian Institute for Water Research)
- 2:20 Break
- 2:40 Example microplastics data collection programs in California
 - j. Microplastics in San Francisco Bay Carolynn Box (5 Gyres)
 - Microplastics in wastewater effluent Steve Carr (Los Angeles County Sanitation Districts)
 - USEPA Region 9 progress toward standardizing microplastic measurement methods
 Anna-Marie Cook (US EPA)
- 3:40 Group discussion with stakeholders about their needs:

What is your most urgent need at this moment?

What would you like to see in a best practices report?

What types of methods would you like to see developed?

What are some of the key concerns that should be taken into consideration when developing/choosing best methods and practices?

4:40 Wrap-up

Next steps towards methods standardization

5:00 Adjourn

TAKE HOME MESSAGE

- 1. Headlines matter
- 2. The Political and Legislative process TRUMPs the conventional regulatory framework
- 3. Analytical technology supports and fosters Contaminant of Emerging Concern (CEC) monitoring and lower levels of detection
- 4. Occurrence Data clarifies everything
- 5. Collaboration and Stakeholder involvement is key

In Memorium

Dr. Michael Dziewatkoski

Thank You

Questions?

Rick Zimmer

Senior Account Manager

Eurofins Eaton Analytical, LLC

Southern California

949-466-8266

RickZimmer@EurofinsUS.com

Kevin Calcagno

Account Manager

Eurofins Eaton Analytical, LLC

Northern California

916-960-7479

KevinCalcagno@EurofinsUS.com