A Framework and Tool for Evaluating California's Progress in Achieving the Human Right to Water

John B Faust, PhD Office of Environmental Health Hazard Assessment *May 23, 2019*

2019 CWA Spring Conference

A FRAMEWORK AND TOOL FOR EVALUATING CALIFORNIA'S PROGRESS IN ACHIEVING THE HUMAN RIGHT TO WATER

JANUARY 2019 DRAFT

Office of Environmental Health Hazard Assesment California Environmental Protection Agency

HENLIGH AZARD ASSUSS

The framework and tool:

- Monitors progress in achieving the human right to water
- Represents first state-led effort to holistically assess the quality, accessibility and affordability of drinking water

- **13** *indicators*: relevance, data quality, coverage, and public availability
- Unit of analysis: Community Water System
- *Time period*: 2008-2016
- Statewide application

A Holistic View of Water System Challenges

Water Quality: Indicators rely on data for 19 contaminants

Criteria for contaminant selection:

- Significant coverage of water quality data:
 - ≥80% of systems report at least one sample

Or

High priority:

Significant number of MCL violations

	Measure Used in Water Quality Indicators				
Contaminant	Exposure Complian				
Arsenic	Yes	Yes			
Barium	Yes	Yes			
Benzene	Yes	Yes			
Cadmium	Yes	Yes			
Carbon tetrachloride	Yes	Yes			
Dibromochloropropane (DBCP)	Yes	Yes			
Lead ⁺	Yes	No			
Mercury	Yes	Yes			
Methyl tertiary butyl ether (MTBE)	Yes	Yes			
Nitrate	Yes	Yes			
Perchloroethylene (PCE)	Yes	Yes			
Perchlorate	Yes	Yes			
Trichloroethylene (TCE)	Yes	Yes			
1,2,3-Trichloropropane (1,2,3-TCP) ⁺	Yes	No			
Toluene	Yes	Yes			
Total Coliform [†]	Yes	Yes			
Total Trihalomethanes (TTHM)	Yes	Yes			
Uranium	Yes	Yes			
Xylene	Yes	Yes			

6

Two Types of Water Quality Indicators: Compliance vs Exposure

Water Quality: Four exposure indicators

Annual average contaminant concentration in delivered water

Potential high exposure *How many contaminants' annual average concentration exceeded the MCL?*

Presence of acute contaminants Are the above contaminants associated with health effects from short term exposure? (nitrate, perchlorate, fecal/E. coli)

Maximum duration of potential high exposure How long did exposure last?

Data availability *Was water quality data available?*

Data source: Water Quality Monitoring database

Count of MCL Violations

Non-compliance with primary drinking standards

How many contaminants received at least one MCL violation in study period?

Presence of acute contaminants

Are the above contaminants associated with health effects from short term exposure? (nitrate, perchlorate, fecal/E. coli)

 \odot

Maximum duration of non-compliance How long did non-compliance last?

Composite View of Water Quality

- Individual indicators highlight specific outcomes
- Composite component score highlights outcomes across multiple indicators

Water Quality: Hypothetical example

Exposure

Potential high exposure Result: Arsenic

Presence of acute contaminants

Result: No

Maximum duration of potential high exposure Result: 9 years of arsenic at 20-30 ppb

Data availability

Result: All required data reported

Compliance

Non-compliance with primary drinking standards

Result: Arsenic

Presence of acute contaminants *Result: No*

Maximum duration of noncompliance

Result: 5 years of MCL violations

Water Accessibility

Entails:

- Physical quantity
- Availability and reliability of supply (sufficient and continuous)

Source type and collection time

OEHHA's current focus: System-related characteristics that can impede access

Physical vulnerability:

 Factors that may interfere with the availability and reliability of an adequate supply

Institutional vulnerability:

• Technical, managerial and financial capacity of a water system to conduct operations and maintenance

Water Accessibility: Three indicators

Physical Vulnerability

Physical vulnerability to water outages What is the source type and how many sources?

Institutional Vulnerability

Institutional capacity

What is the size and disadvantaged community (DAC) status?

Managerial constraints How many monitoring and reporting violations?

Data sources: SDWIS and U.S. census data

Future steps: Additional indicators to address other aspects of accessibility

Composite View of Water Accessibility

- Individual indicators highlight specific outcomes
- Composite component score highlights outcomes across multiple indicators

Water Accessibility: Hypothetical example

Physical Vulnerability

~	

Physical vulnerability to water outages Result: 1 groundwater well

Institutional Vulnerability

Institutional capacity Result: 50 connections Median Household Income: \$42,271 (DAC)

Managerial constraints

Result: 10 Monitoring & Reporting Violations

Water Affordability: Three indicators

 $\frac{\text{Monthly Water Bill @ 6 Hundred Cubic Feet}}{\text{Income of Water System}} \ge$

Multiple ratios

69

Affordability Ratio at the County Poverty Threshold

Affordability Ratio at the

Median Household Income

Data sources: electronic Annual Report, census data, poverty threshold calculations from Public Policy Institute of California

Gaps: Additional effort needed to fill in water cost data gaps

Affordability Ratio at the **Deep Poverty Threshold**

 Proportion
Households
Earning at the Income Threshold

Composite View of Water Affordability

- Individual indicator scores provide affordability information for specific income levels
- Composite score provides overall affordability burden:
 - Factors in economic vulnerability and proportion of households facing different burdens

Water Affordability: Hypothetical example

Monthly Water Bill:	\$72
Median Household Income:	\$42,279
County Poverty:	\$25,717
Deep Poverty:	\$12,858

Affordability Ratio at the **Median Household Income**

Result: 2.1%

Affordability Ratio at the <u>County Poverty Threshold</u> *Result: 3.4%; 30% of households*

Affordability Ratio at the Deep Poverty Threshold

Result: 6.8%; 5% of households

Framework and tool allow for an assessment of the status of water systems...

	Water Quality					Accessibility			Affordability				
Indicator	f				X							R B	
	1	2	3	4	5	6	7	1	2	3	1	2	3
System A													
System B													
System C													
	Less concern			More concern									

The framework and tool:

- Summarize 3 components and 13 indicators
- Offers holistic view that can help show interrelationships
- Provides a view of big-picture trends across water systems and regions, statewide
- Helps capture how those trends might change over time

• Public comment closed February 4, 2019

- Public comments posted on OEHHA's website
- Next steps:
 - Ongoing OEHHA review of comments
 - Revisions to framework
 - Release of next draft document explaining the tool in detail

A FRAMEWORK AND TOOL FOR EVALUATING CALIFORNIA'S PROGRESS IN ACHIEVING THE HUMAN RIGHT TO WATER

JANUARY 2019 DRAFT

Office of Environmental Health Hazard Assesment California Environmental Protection Agency

Contributors & Program Information

Staff leadCarolina Balazs, PhD
Research Scientist, OEHHAProgram webpagehttps://oehha.ca.gov/water/report/human-right-water-californiaProgram emailHR2.Water@oehha.ca.gov

A FRAMEWORK AND TOOL FOR EVALUATING CALIFORNIA'S PROGRESS IN ACHIEVING THE HUMAN RIGHT TO WATER

JANUARY 2019 DRAFT

()) ОЕННА

Office of Environmental Health Hazard Assesment California Environmental Protection Agency

Authors	Reviewers	Technical Editor	CalEPA Reviewers		
Carolina Balazs	Lauren Zeise	Krystyna von	Yana Garcia		
John B Faust	Allan Hirsch	Henneberg	Arsenio Mataka		
Jessica J Goddard			Gina Solomon		
Komal Bangia					
Emilie Fons					
Molly Starke					